Long-Term Expandable SOX9+ Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells

نویسندگان

  • Katsutsugu Umeda
  • Hirotsugu Oda
  • Qing Yan
  • Nadine Matthias
  • Jiangang Zhao
  • Brian R. Davis
  • Naoki Nakayama
چکیده

Here we report the successful generation and long-term expansion of SOX9-expressing CD271(+)PDGFRα(+)CD73(+) chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1(-)CD271(hi)PDGFRα(lo)CD73(-) neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/transforming growth factorβ (TGFβ) inhibitor and fibroblast growth factor (FGF). When "primed" with TGFβ, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. The ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages. They maintained normal karyotype for at least 10 passages and expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B), cranial mesenchyme (ALX1/3/4), and chondroprogenitors (SOX9, COL2A1) of neural crest origin (SOX8/9, NGFR, NES). Ectomesenchyme is a source of many craniofacial bone and cartilage structures. The method we describe for obtaining a large quantity of human ectomesenchymal cells will help to model craniofacial disorders in vitro and potentially provide cells for the repair of craniofacial damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem Cell Reports Resource Long-Term Expandable SOX9 Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells

Katsutsugu Umeda,1,3 Hirotsugu Oda,2 Qing Yan,1,4 Nadine Matthias,1 Jiangang Zhao,1,5 Brian R. Davis,1 and Naoki Nakayama1,* 1Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, Houston, TX 77030, USA 2Department of Pediatrics, Kyoto University School of Medicine, Kyoto 606-8507, Japan 3Present address: Department of Pediatrics, Kyoto Univer...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

Direct Induction of Chondrogenic Cells from Human Dermal Fibroblast Culture by Defined Factors

The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon) cell...

متن کامل

Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte‑like cells and the relative value of cell differentiation markers. The main aims of the present study were ...

متن کامل

Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells

Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015